Umbral Calculus, Bailey Chains, and Pentagonal Number Theorems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN ELLIPTIC BCn BAILEY LEMMA, MULTIPLE ROGERS–RAMANUJAN IDENTITIES AND EULER’S PENTAGONAL NUMBER THEOREMS

An elliptic BCn generalization of the classical two parameter Bailey Lemma is proved, and a basic one parameter BCn Bailey Lemma is obtained as a limiting case. Several summation and transformation formulas associated with the root system BCn are proved as applications, including a 6φ5 summation formula, a generalized Watson transformation and an unspecialized Rogers–Selberg identity. The last ...

متن کامل

Formal Calculus and Umbral Calculus

We use the viewpoint of the formal calculus underlying vertex operator algebra theory to study certain aspects of the classical umbral calculus. We begin by calculating the exponential generating function of the higher derivatives of a composite function, following a very short proof which naturally arose as a motivating computation related to a certain crucial “associativity” property of an im...

متن کامل

Algebras and the Umbral Calculus ∗

We apply Baxter algebras to the study of the umbral calculus. We give a characterization of the umbral calculus in terms of Baxter algebra. This characterization leads to a natural generalization of the umbral calculus that include the classical umbral calculus in a family of λ-umbral calculi parameterized by λ in the base ring.

متن کامل

Computer algebra and Umbral Calculus

Rota's Umbral Calculus uses sequences of Sheffer polynomials to count certain combinatorial objects. We review this theory and some of its generalizations in light of our computer implementation (Maple V.3). A Mathematica version of this package is being developed in parallel.

متن کامل

Applied Umbral Calculus

Common ground to the three concepts are special polynomial sequences, called She er sequences. A polynomial sequence (sm (x))m2N0 is a sequence of polynomials sm (x) 2 K [x] such that deg sm = m, s0 6= 0. It is convenient to de ne sm = 0 for negative m. The coe cient ring K is assumed to be an integral domain. For this introduction to Finite Operator Calculus it su ces to choose K as R [!], the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2000

ISSN: 0097-3165

DOI: 10.1006/jcta.2000.3111